\qquad
\qquad
\qquad

${ }_{10}^{\text {LEsson }}$ Properties of Dilations

Practice and Problem Solving: A/B

Use triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ for Exercises 1-4.

1. Use the coordinates to find the lengths of the sides.

Triangle $A B C$: $A B=$ \qquad ; $B C=$ \qquad
Triangle $A^{\prime} B^{\prime} C^{\prime}: A^{\prime} B^{\prime}=$ \qquad ; $B^{\prime} C^{\prime}=$ \qquad
2. Find the ratios of the corresponding sides.

$$
\frac{A^{\prime} B^{\prime}}{A B}=-=\quad \frac{B^{\prime} C^{\prime}}{B C}=-=
$$

\qquad
3. Is triangle $A^{\prime} B^{\prime} C^{\prime}$ a dilation of triangle $A B C$? \qquad

4. If triangle $A^{\prime} B^{\prime} C^{\prime}$ is a dilation of triangle $A B C$, is it a reduction or an enlargement? \qquad
For Exercises 5-8, tell whether one figure is a dilation of the other or not. If one figure is a dilation of the other, tell whether it is an enlargement or a reduction. Explain your reasoning.
5. Triangle R 'S' T^{\prime} has sides of $3 \mathrm{~cm}, 4 \mathrm{~cm}$, and 5 cm . Triangle $R S T$ has sides of $12 \mathrm{~cm}, 16 \mathrm{~cm}$, and 25 cm .
\qquad
\qquad
6. Quadrilateral $W B C D$ has coordinates of $W(0,0), B(0,4), C(-6,4)$, and $D(-6,0)$. Quadrilateral $W^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has coordinates of $W^{\prime}(0,0), B^{\prime}(0,2)$, $C^{\prime}(-3,2)$, and $D^{\prime}(-3,0)$.
\qquad
\qquad
7. Triangle $M L Q$ has sides of $4 \mathrm{~cm}, 4 \mathrm{~cm}$, and 7 cm . Triangle $M^{\prime} L^{\prime} Q^{\prime}$ has sides of $12 \mathrm{~cm}, 12 \mathrm{~cm}$, and 21 cm .
\qquad
\qquad
8. Do the figures at the right show a dilation? Explain.
\qquad
\qquad

MODULE 9 Challenge

1. $(x, y) \rightarrow(x+h, y+k)$; translation, direct
2. $(x, y) \rightarrow(x-y)$; reflection across x-axis, opposite
3. $(x, y) \rightarrow(-y, x)$; rotation of 90°, opposite
4. $(x, y) \rightarrow(-x, y)$; reflection across y-axis, opposite
5. translation
6. rotation, reflection

MODULE 10 Transformations and Similarity

LESSON 10-1

Practice and Problem Solving: A/B

1. 2,$2 ; 6,6$
2. $\frac{6}{2}=3 ; \frac{6}{2}=3$
3. Yes
4. enlargement
5. No, the ratios are not all equal.

$$
\frac{3}{12}=\frac{1}{4} ; \frac{4}{16}=\frac{1}{4} ; \frac{5}{25}=\frac{1}{5}
$$

6. Yes, this shows a reduction. The ratio of the lengths of corresponding sides is $\frac{1}{2}$.
7. Yes, this shows an enlargement. The ratio of the lengths of corresponding sides is $\frac{3}{1}$.
8. Yes; The lines drawn through corresponding vertices meet in a single point.

Practice and Problem Solving: C

1. 2.5
2. $\frac{1}{3}$
3.

4.

5. scale factor: 3; area of original rectangle: 6 square units; area of dilation: 54 square units
6. scale factor: $\frac{1}{2}$; area of original rectangle: 8 square units; area of dilation: 2 square units
7. Sample answer: The area of the image is the area of the original figure times the square of the scale factor.

Practice and Problem Solving: D

1. $3 ; 2 ; 9 ; 6$
2. $\frac{9}{3}=3 ; \frac{6}{2}=3$;
3. Yes
4. Enlargement
5. $6,6,6,6 ; 3,3,3,3$
6. $\frac{3}{6}=\frac{1}{2} ; \frac{3}{6}=\frac{1}{2} ; \frac{3}{6}=\frac{1}{2} ; \frac{3}{6}=\frac{1}{2}$
7. Yes
8. Reduction
9. Enlargement

Reteach

1. $\frac{4}{3}=1 \frac{1}{3} ; \frac{3}{4}=\frac{3}{4}$; no; no
2. $\frac{2}{4}=\frac{1}{2} ; \frac{4}{8}=\frac{1}{2}$; yes; yes
