\qquad
\qquad
\qquad

Lesson Distance Between Two Points
 Practice and Problem Solving: A/B

Name the coordinates of the points.
1.

A(\qquad , \qquad)
$B($ \qquad , \qquad)
\qquad , \qquad)
2.

$D($ \qquad , \qquad)
$E($ \qquad , \qquad)
F(
\qquad , \qquad)

Name the hypotenuse of each right triangle in problems 1 and 2.
3. Hypotenuse in problem 1:
4. Hypotenuse in problem 2:

Estimate the length of the hypotenuse for each right triangle in problems 1 and 2.
5. Hypotenuse in problem 1:
6. Hypotenuse in problem 2:

Use the distance formula to calculate the length of the hypotenuse for

 each right triangle.7. Hypotenuse in problem 1:
\qquad
\qquad
8. Hypotenuse in problem 2:
\qquad
\qquad
9. Use the distance formula to find the distance between the points $(-4,-4)$ and $(4,4)$.

Reteach

1. 10 in .
2. 15 mm
3. $3 ; 1^{2}+2^{2}=5 ; 3^{2}=9$; no
4. $8 ; 6^{2}+7^{2}=85 ; 8^{2}=64 ;$ no
5. $25 ; 15^{2}+20^{2}=625 ; 25^{2}=625$; yes
6. $2^{2}+3^{2}=13 ;(\sqrt{13})^{2}=13$
7. $3^{2}+6^{2}=45 ;(3 \sqrt{5})^{2}=9(5)=45$

Reading Strategies

1. Answers may vary. Sample answer: "If a right triangle has sides of 5 and 12, then its third side is the square root of 5 squared plus 12 squared, or 13 ."
2. Answers may vary. Sample answer: "If a triangle has sides 4,4 , and 8 , then it is not a right triangle because the sum of 4 squared plus 4 squared is 32 , which is not equal to 8 squared or 64 ."

Success for English Learners

1. The sides 7,24 , and 25 can be used to make a right triangle as shown, assuming that the 7 and 24 sides are perpendicular to each other and form a right angle. However, this is an informal proof by observation, not a formal proof using specific numbers from the problem.
2. Shorter, since a length longer than 12 would make the square of the hypotenuse $\left(12^{2}=144\right)$ greater than the sum of the squares of the sides of the sides $\left(5^{2}+8^{2}=25+64=89\right)$.

LESSON 12-3

Practice and Problem Solving: A/B

1. $A(-4,2) ; B(4,6) ; C(4,2)$
2. $D(-3,3) ; E(3,-2) ; F(-3,-2)$
3. $\overline{A B}$
4. $\overline{D E}$
5. Answers will vary. Sample answer: 9 units.
6. Answers will vary. Sample answer: 8 units.
7. $\overline{A B}=4 \sqrt{5}$
8. $\overline{D E}=\sqrt{61}$
9. $8 \sqrt{2}$

Practice and Problem Solving: C

1. $d_{A B}=\sqrt{10} ; d_{B C}=3 ; d_{A C}=1 ; \overline{A B}$ is the hypotenuse, so does $(\sqrt{10})^{2}=3^{2}+1^{2}$? Yes.
2. $A B=3.5 \mathrm{~km} ; B C=2.5 \mathrm{~km} ; C A=2 \sqrt{2}$, so the perimeter is $6+2 \sqrt{2}$ or approx. 8.8 km
3. $d=\sqrt{(x+5)^{2}+(3-7)^{2}}=\sqrt{(x+5)^{2}+16}$; for $d=5, \sqrt{(x+5)^{2}+16} ;=5$ and $x+5=3$. So $x=-2$.
4. $d=\sqrt{(6-3)^{2}+(y+4)^{2}}=\sqrt{9+(y+4)^{2}}$; for $d=5, \sqrt{9+(y+4)^{2}}=5$ and $(y+4)^{2}=16$ and $(y+4)=-4$ and $y=-8$.

Practice and Problem Solving:

1. $2 \sqrt{2}$
2. $4 \sqrt{2} ; x_{2}=-5 ; x_{1}=-1 ; y_{2}=7 ; y_{1}=3$;
$d=\sqrt{(-5+1)^{2}+(7-3)^{2}}$
3. $10 \sqrt{2} ; x_{2}=10 ; x_{1}=0 ; y_{2}=-15 ; y_{1}=-5$;
$d=\sqrt{(10-0)^{2}+(-15+5)^{2}}$
4. Answers will vary.; Sample answer: x-distance between points $=10$;
$A B=$ more than 10.
5. Answers will vary.; Sample answer: x-distance between points $=5$; $C D=$ more than 5 .
6. Answers will vary.; Sample answer: x-distance between points $=5$; $E F=$ more than 5.
7. Answers will vary.; Sample answer: x-distance between points $=7$; $C D=$ more than 7 .
8. The difference of the y-coordinates is $|5-1|=4$.
9. The difference of the y-coordinates is $|-4+1|=3$.
