Fluency Table of Contents

Rational and Irrational NumbersSkills Practice (Forms A and B)Evaluate square roots and cuberoots.336Solve equations of the form $x^{2}=p$ and $x^{3}=p$. 338
Approximate irrational numbers. 340
Approximate expressions with irrational numbers 342
Rewrite a repeating decimal as a fraction. 344
Repeated Reasoning
Find patterns in repeating decimals. 346
Integer ExponentsSkills Practice (Forms A and B)
Simplify expressions with exponents. 347
Simplify more expressions with exponents. 349
Repeated Reasoning
Find patterns in products of powers with the same base. 351
Find more patterns in products of powers with the same base 352
Find patterns in quotients of powers with the same base. 353
Find more patterns in quotients of powers with the same base. 354
Find patterns in products of powers with different bases. 355
Page
Scientific Notation
Skills Practice (Forms A and B)
Write the numbers in scientific notation. 356
Perform operations with numbers written in scientific notation. 358
Solutions to Linear Equations
Skills Practice (Forms A and B)
Solve and tell how many solutions. 360
Use the distributive property to solve and tell how many solutions. 362
Systems of Equations
Skills Practice (Forms A and B)
Solve systems of equations using substitution. 364
Solve systems of equations using any method. 366
Solve systems of equations involving fractions and decimals. 368
Linear Functions
Skills Practice (Forms A and B)
Find the slope of the line through two given points. 370
Determine the rate of change and the initial value of the line through two given points. 372
Identify another point on the line given one point and the slope. 374

Rational and Irrational NumbersSkills Practice

\qquad

Evaluate square roots and cube roots. Simplify each expression.

Form A

$1 \sqrt{16}=$ \qquad
2) $\sqrt[3]{0}=$ \qquad $3 \sqrt{1}=$ \qquad
(4) $\sqrt{64}=$ \qquad
(5) $\sqrt{144}=$ \qquad (6) $\sqrt{169}=$ \qquad
\qquad $8 \sqrt{100}=$ \qquad (9) $\sqrt{49}=$ \qquad
$10 \sqrt[3]{27}=$ \qquad
$11 \sqrt[3]{125}=$ \qquad
$12 \sqrt{2,500}=$ \qquad
$13 \sqrt[3]{64}=$ \qquad $14 \sqrt{900}=$ \qquad $15 \sqrt{36}=$ \qquad
$16 \sqrt{441}=$ \qquad
$17 \sqrt[3]{1,000}=$ \qquad
$18 \sqrt{25}=$ \qquad

Rational and Irrational NumbersSkills Practice

\qquad

Evaluate square roots and cube roots. Simplify each expression.
$1 \sqrt{9}=$ \qquad 2 $\sqrt[3]{1}=$ \qquad (3) $\sqrt{0}=$ \qquad
\qquad (5) $\sqrt{121}=$ \qquad 6) $\sqrt[3]{1,000}=$ \qquad
(7) $\sqrt[3]{27}=$ \qquad $8 \sqrt{25}=$ \qquad $9 \sqrt{4}=$ \qquad
$10 \sqrt{225}=$ \qquad $11 \sqrt{400}=$ \qquad $12 \sqrt[3]{216}=$ \qquad
$13 \sqrt{64}=$ \qquad $14 \sqrt{1,600}=$ \qquad $15 \sqrt{625}=$ \qquad
$16 \sqrt[3]{8}=$ \qquad
$17 \sqrt[3]{512}=$ \qquad
$18 \sqrt{961}=$ \qquad

Rational and Irrational NumbersSkills Practice

\qquad

Solve equations of the form $x^{2}=p$ and $x^{3}=p$.

Form A

$1 x^{2}=1 ; x=$ \qquad $2 x^{2}=49 ; x=$ \qquad (3) $x^{3}=8 ; x=$ \qquad
$6 x^{2}=144 ; x=$ \qquad
($7 x^{3}=\frac{1}{8} ; x=$ \qquad $8 x^{2}=\frac{81}{100} ; x=$ \qquad $9 x^{2}=16 ; x=$ \qquad
$10 x^{3}=64 ; x=$ \qquad
$11 x^{2}=900 ; x=$ \qquad $12 x^{2}=\frac{1}{49} ; x=$ \qquad
$13 x^{3}=125 ; x=$ \qquad
$14 x^{2}=\frac{36}{49} ; x=$ \qquad $15 x^{2}=\frac{9}{25} ; x=$ \qquad
$16 x^{2}=2,500 ; x=$ \qquad $17 x^{3}=\frac{1}{27} ; x=$ \qquad $18 x^{2}=36 ; x=$ \qquad

Rational and Irrational NumbersSkills Practice

\qquad

Solve equations of the form $x^{2}=p$ and $x^{3}=p$.
$1 x^{2}=121 ; x=$ \qquad
$2 x^{3}=1,000 ; x=$ \qquad (3) $x^{2}=\frac{25}{49} ; x=$ \qquad
$4 x^{2}=25 ; x=$ \qquad
$5 x^{2}=\frac{9}{64} ; x=$ \qquad
$7 x^{2}=9 ; x=$ \qquad
$8 x^{3}=\frac{27}{64} ; x=$ \qquad
$10 x^{2}=\frac{121}{144} ; x=$ \qquad $11 x^{2}=1,600 ; x=$ \qquad $12 x^{3}=\frac{64}{125} ; x=$ \qquad
$13 x^{2}=441 ; x=$ \qquad
$14 x^{2}=\frac{49}{81} ; x=$ \qquad $15 x^{2}=225 ; x=$ \qquad
$16 x^{3}=216 ; x=$ \qquad
$17 x^{2}=625 ; x=$ \qquad
$18 x^{2}=\frac{1}{9} ; x=$ \qquad

Rational and Irrational NumbersSkills Practice

\qquad

Approximate irrational numbers.
Write the two consecutive whole numbers that the given number is between.
$1 \sqrt{5}$ \qquad
$2 \sqrt{10}$ \qquad
(4) $\sqrt{28}$ \qquad $5 \sqrt{23}$ \qquad
$7 \sqrt{45}$ \qquad $8 \sqrt{29}$ \qquad
$3 \sqrt{8}$
\qquad
$6 \sqrt{84}$ \qquad
$9 \sqrt{70}$ \qquad

Approximate to the nearest whole number.
$10 \sqrt{5} \approx$ \qquad
$11 \sqrt{10} \approx$ \qquad
$13 \sqrt{28} \approx$ \qquad
$14 \sqrt{23} \approx$ \qquad
$12 \sqrt{8} \approx$ \qquad
$16 \sqrt{45} \approx$ \qquad
$17 \sqrt{29} \approx$ \qquad
$15 \sqrt{84} \approx$ \qquad
$18 \sqrt{70} \approx$ \qquad

Approximate to the nearest tenth.
$19 \sqrt{5} \approx$ \qquad
$20 \sqrt{10} \approx$ \qquad $21 \sqrt{8} \approx$ \qquad
$22 \sqrt{28} \approx$ \qquad
$23 \sqrt{23} \approx$ \qquad
$24 \sqrt{84} \approx$ \qquad

Approximate to the nearest hundredth.
$25 \sqrt{5} \approx$ \qquad
$26 \sqrt{10} \approx$ \qquad
$27 \sqrt{8} \approx$ \qquad

Rational and Irrational NumbersSkills Practice

\qquad

Approximate irrational numbers.
Write the two consecutive whole numbers that the given number is between.
$1 \sqrt{2}$ \qquad $2 \sqrt{3}$ \qquad
(3) $\sqrt{7}$
$4 \sqrt{14}$ \qquad (5) $\sqrt{55}$ \qquad
(7) $\sqrt{99}$ \qquad $8 \sqrt{39}$ \qquad $9 \sqrt{24}$
\qquad
\qquad

Approximate to the nearest whole number.
$10 \sqrt{2} \approx$
$13 \sqrt{14} \approx$ \qquad
$16 \sqrt{99} \approx$ \qquad
\qquad $18 \sqrt{24} \approx$ \qquad

Approximate to the nearest tenth.
$19 \sqrt{2} \approx$ \qquad $20 \sqrt{3} \approx$ \qquad $21 \sqrt{7} \approx$ \qquad
$22 \sqrt{14} \approx$ \qquad
$23 \sqrt{55} \approx$ \qquad
$24 \sqrt{39} \approx$ \qquad

Approximate to the nearest hundredth.
$25 \sqrt{2} \approx$ \qquad
$26 \sqrt{3} \approx$ \qquad (27) $\sqrt{7} \approx$ \qquad

Rational and Irrational NumbersSkills Practice

\qquad

Approximate expressions with irrational numbers.
Give the two consecutive whole numbers that the given expression is between.
\qquad
(4) $\frac{4}{3} \pi$
\qquad (5) $4 \sqrt{5}$ \qquad $6 \sqrt{48}-2$ \qquad

Approximate the value of the expression to the nearest whole number.
$7 \sqrt{5}+\sqrt{2} \approx$ \qquad $8 \pi^{2} \approx$ \qquad (9) $\frac{\sqrt{82}}{4} \approx$ \qquad
$103 \pi \approx$ \qquad
$11(\sqrt{2})^{3} \approx$ \qquad
$123 \sqrt{24} \approx$ \qquad

Approximate the value of the expression to the nearest tenth.
$13 \sqrt{3}-\sqrt{2} \approx$ \qquad
$14 \frac{\sqrt{2}}{2} \approx$ \qquad $15 \frac{1}{\sqrt{3}} \approx$ \qquad
$16 \frac{\pi}{2} \approx$ \qquad
$17 \frac{2}{\sqrt{2}} \approx$ \qquad
$185-\pi \approx$ \qquad

Rational and Irrational NumbersSkills Practice

\qquad

Approximate expressions with irrational numbers.
Give the two consecutive whole numbers that the given expression is between.
24π \qquad $3 \sqrt{35}-2$ \qquad
(4) $\frac{2}{3} \pi$ \qquad
(5) $4 \sqrt{8}$ \qquad $6 \sqrt{48}+2$

Approximate the value of the expression to the nearest whole number.
$7 \sqrt{3}+\sqrt{2} \approx$ \qquad
$8 \pi^{3} \approx$ \qquad (9) $\frac{\sqrt{65}}{3} \approx$ \qquad
$10 \frac{\pi}{3} \approx$ \qquad
$11(\sqrt{3})^{3} \approx$ \qquad $124 \sqrt{26} \approx$ \qquad

Approximate the value of the expression to the nearest tenth.
$13 \sqrt{5}-\sqrt{3} \approx$ \qquad
$14 \frac{\sqrt{3}}{2} \approx$ \qquad
(15) $\frac{1}{\sqrt{2}} \approx$ \qquad
$165 \pi \approx$ \qquad
$17 \frac{2}{\sqrt{3}} \approx$ \qquad
$186-\pi \approx$ \qquad

Rational and Irrational Numbers-

 Skills Practice \qquad
Rewrite a repeating decimal as a fraction.

Form A

$10 . \overline{6}=$ \qquad
$20 . \overline{63}=$ \qquad (3) $0 . \overline{4}=$ \qquad
$4.8 \overline{3}=$ \qquad
(5) $0.1 \overline{3}=$ \qquad 6. $0.2 \overline{7}=$ \qquad
$70.6 \overline{1}=$ \qquad
$80.0 \overline{6}=$ \qquad
(9) $0.9 \overline{4}=$ \qquad
$100 . \overline{36}=$ \qquad
$110 . \overline{7}=$ \qquad
$120 . \overline{54}=$ \qquad
$130.41 \overline{6}=$ \qquad
$140.8 \overline{6}=$ \qquad
$150.08 \overline{3}=$ \qquad
$160 . \overline{27}=$ \qquad
$170 . \overline{1}=$ \qquad
$180 . \overline{90}=$ \qquad

Rational and Irrational NumbersSkills Practice

\qquad

Rewrite a repeating decimal as a fraction.

\qquad $20 . \overline{81}=$ \qquad (3) $0 . \overline{5}=$ \qquad
$5.7 \overline{3}=$ \qquad $60.3 \overline{8}=$ \qquad
$80.2 \overline{6}=$ \qquad $9.5 \overline{3}=$ \qquad
$100 . \overline{18}=$ \qquad
$110 . \overline{2}=$ \qquad
$120 . \overline{45}=$ \qquad
$130.58 \overline{3}=$ \qquad
$140.0 \overline{5}=$ \qquad $150.91 \overline{6}=$ \qquad
$160 . \overline{09}=$ \qquad
$170 . \overline{8}=$ \qquad
$180 . \overline{72}=$ \qquad

Rational and Irrational NumbersRepeated Reasoning

\qquad

Find patterns in repeating decimals. Rewrite each decimal as a fraction.

Set A

$10 . \overline{3}=$ \qquad
2. $0.0 \overline{3}=$ \qquad
(3) $0.00 \overline{3}=$ \qquad
4) $0 . \overline{4}=$ \qquad
(5) $0.0 \overline{4}=$ \qquad
(6) $0.00 \overline{4}=$ \qquad
(7) $0 . \overline{5}=$ \qquad
$80.0 \overline{5}=$ \qquad
$90.00 \overline{5}=$ \qquad

Set B

(1) $0 . \overline{3}=$ \qquad
2. $0 . \overline{03}=$ \qquad
(3) $0 . \overline{003}=$ \qquad
4) $0 . \overline{4}=$ \qquad
(5) $0 . \overline{04}=$ \qquad
(6) $0 . \overline{004}=$ \qquad
(7) $0 . \overline{5}=$ \qquad
$80 . \overline{05}=$ \qquad
$90 . \overline{005}=$
\qquad

Describe a pattern you see in one of the sets of problems above.
\qquad
\qquad
\qquad
\qquad
\qquad

Integer Exponents-Skills Practice

Simplify expressions with exponents.
Rewrite each expression using a single nonnegative exponent.
$1 y^{5} \cdot y^{7}=$
(4) $\frac{m^{3}}{m^{9}}=$ \qquad (5) $\left(n^{9}\right)^{3}=$ \qquad

Evaluate each expression.
(7) $4^{2} \cdot 4^{1}=$ \qquad $82^{3} \cdot 5^{3}=$ \qquad $9\left(2^{3}\right)^{4}=$ \qquad
$10\left(5^{2}\right)^{3}=$ \qquad
$116^{2} \cdot 7^{2}=$ \qquad
(12) $\frac{3^{3}}{3^{5}}=$
\qquad
$133^{3} \cdot 3^{2}=$ \qquad
$14 \frac{8^{3}}{2^{3}}=$ \qquad $15 \frac{2^{6}}{2^{3}}=$ \qquad
$162^{4} \cdot 3^{4}=$ \qquad
$17 \frac{4^{2}}{2^{2}}=$ \qquad
$18 \frac{5^{3}}{5^{2}}=$ \qquad

Integer Exponents-Skills Practice

\qquad

Simplify expressions with exponents.

Rewrite each expression using a single nonnegative exponent.
$1 y^{4} \cdot y^{11}=$
2. $\left(m^{2}\right)^{7}=$ \qquad $3 n^{8} \cdot n^{5}=$ \qquad
(4) $\frac{m^{2}}{m^{6}}=$ \qquad
$5\left(n^{8}\right)^{7}=$ \qquad
(6) $\frac{w^{10}}{w^{5}}=$ \qquad

Evaluate each expression.
$75^{2} \cdot 5^{4}=$ \qquad
$82^{1} \cdot 6^{1}=$ \qquad $9\left(2^{2}\right)^{5}=$ \qquad
$10\left(3^{2}\right)^{2}=$ \qquad
$114^{2} \cdot 2^{2}=$ \qquad $12 \frac{3^{6}}{3^{6}}=$ \qquad
$132^{2} \cdot 2^{4}=$ \qquad
$14 \frac{10^{3}}{2^{3}}=$ \qquad 15 $\frac{2^{5}}{2^{3}}=$ \qquad
$164^{3} \cdot 2^{3}=$ \qquad
(17) $\frac{4^{2}}{8^{2}}=$ \qquad
$18 \frac{4^{3}}{4^{2}}=$ \qquad

Integer Exponents-Skills Practice

\qquad

Simplify more expressions with exponents.
Rewrite each expression using a single exponent.
$1 y^{-3} \cdot y^{-7}=$ \qquad
$2\left(m^{-2}\right)^{3}=$
\qquad (3) $n^{-2} \cdot n^{8}=$ \qquad
(4) $\frac{m^{-10}}{m^{-5}}=$ \qquad
$5\left(n^{-4}\right)^{-4}=$ \qquad $6 \frac{w^{6}}{w^{-5}}=$ \qquad

Evaluate each expression.

(7) $2^{-4} \cdot 2^{-2}=$ \qquad
$80^{7} \cdot 2^{7}=$ \qquad
$9\left(2^{-3}\right)^{-3}=$ \qquad
$10\left(3^{-4}\right)^{0}=$ \qquad
$11(-2)^{-2} \cdot(-2)^{-2}=$ \qquad
$12 \frac{(-6)^{3}}{(-6)^{2}}=$ \qquad
$133^{0} \cdot 3^{-4}=$ \qquad
$14 \frac{7^{-2}}{3^{-2}}=$ \qquad $15 \frac{4^{-2}}{4^{-5}}=$ \qquad
$16(-5)^{4} \cdot(-5)^{-3}=$ \qquad
$17 \frac{(-8)^{0}}{(-7)^{0}}=$ \qquad $18 \frac{(-4)^{3}}{(-6)^{3}}=$ \qquad

Integer Exponents-Skills Practice

Simplify more expressions with exponents.

Rewrite each expression using a single exponent.
$1 y^{-4} \cdot y^{-5}=$ \qquad
$2\left(m^{-3}\right)^{5}=$ \qquad (3) $n^{-3} \cdot n^{6}=$ \qquad
(4) $\frac{m^{-12}}{m^{-6}}=$ \qquad

Evaluate each expression.

($2^{-3} \cdot 2^{-2}=$
\qquad $8(-6)^{4} \cdot(-6)^{-3}=$ \qquad $9\left(4^{-6}\right)^{0}=$ \qquad
$10\left(3^{-2}\right)^{-2}=$ \qquad
$11(-3)^{-2} \cdot(-4)^{-2}=$ \qquad
$12 \frac{(-5)^{4}}{(-5)^{3}}=$ \qquad
$134^{0} \cdot 4^{-3}=$ \qquad
$14 \frac{8^{-2}}{3^{-2}}=$
\qquad $15 \frac{3^{-2}}{3^{-5}}=$ \qquad
$160^{6} \cdot 2^{6}=$ \qquad
$17 \frac{(-6)^{3}}{(3)^{3}}=$ \qquad
$18 \frac{(-6)^{0}}{(-5)^{0}}=$ \qquad

Integer Exponents-Repeated Reasoning

\qquad

Find patterns in products of powers with the same base.
Expand each factor. Write the product in expanded form. Then write the product using an exponent. The first one is done for you.
$12^{3} \times 2^{2}=(2 \times 2 \times 2) \times(2 \times 2)=2 \times 2 \times 2 \times 2 \times 2=2^{5}$
2. $3^{3} \times 3^{2}=$ \qquad
(3) $4^{3} \times 4^{2}=$ \qquad
($5^{3} \times 5^{2}=$ \qquad
$56^{3} \times 6^{2}=$ \qquad
$67^{3} \times 7^{2}=$ \qquad
$78^{3} \times 8^{2}=$ \qquad
$89^{3} \times 9^{2}=$ \qquad
$9 n^{3} \times n^{2}=$ \qquad
$104.2^{3} \times 4.2^{2}=$

Describe a pattern or relationship you see between the problems and the answers. Explain what the pattern means or why it happens.
\qquad
\qquad
\qquad
\qquad

Find more patterns in products of powers with the same base. Write each expression as a power of a single number.

Set A

1. $3^{2} \times 3^{1}=$ \qquad
(3) $3^{2} \times 3^{2}=$ \qquad
$53^{2} \times 3^{3}=$ \qquad
2. $3^{2} \times 3^{4}=$ \qquad $83^{-2} \times 3^{-4}=$ \qquad
9) $3^{2} \times 3^{5}=$ \qquad $103^{-2} \times 3^{-5}=$ \qquad
$113^{2} \times 3^{6}=$ \qquad
$123^{-2} \times 3^{-6}=$ \qquad

Set B
(1) $3^{-2} \times 3^{1}=$ \qquad (2) $3^{-2} \times 3^{2}=$ \qquad (3) $3^{-2} \times 3^{3}=$ \qquad
4 $3^{2} \times 3^{-1}=$ \qquad
(5) $3^{2} \times 3^{-2}=$
\qquad (6) $3^{2} \times 3^{-3}=$ \qquad

Describe a pattern you see in one of the sets of problems above.
\qquad
\qquad
\qquad

Integer Exponents-Repeated Reasoning

\qquad

Find patterns in quotients of powers with the same base.
Expand each term in the quotient of powers. Write the quotient in expanded form. Then write the quotient using an exponent. The first one has been done for you.
$12^{5} \div 2^{3}=(2 \cdot 2 \cdot 2 \cdot 2 \cdot 2) \div(2 \cdot 2 \cdot 2)=2 \cdot 2=2^{2}$
(2) $3^{5} \div 3^{3}=$ \qquad
(3) $4^{5} \div 4^{3}=$ \qquad
($5^{5} \div 5^{3}=$ \qquad
5. $6^{5} \div 6^{3}=$ \qquad
$67^{5} \div 7^{3}=$ \qquad
$78^{5} \div 8^{3}=$ \qquad
$89^{5} \div 9^{3}=$ \qquad
$9 n^{5} \div n^{3}=$ \qquad
$106.3^{5} \div 6.3^{3}=$ \qquad

Describe a pattern or relationship you see between the problems and the answers. Explain what the pattern means or why it happens.
\qquad
\qquad
\qquad

Integer Exponents-Repeated Reasoning

\qquad

Find more patterns in quotients of powers with the same base.
Expand each term in the quotient of powers. Write the quotient in expanded form. Then write the quotient using an exponent. The first one has been done for you.
$12^{4} \div 2^{1}=(2 \times 2 \times 2 \times 2) \div(2)=2 \times 2 \times 2=2^{3}$
2. $2^{4} \div 2^{2}=$
3. $2^{4} \div 2^{3}=$ \qquad
4) $2^{4} \div 2^{4}=$ \qquad

5 $2^{4} \div 2^{5}=$ \qquad
$62^{4} \div 2^{6}=$ \qquad
$72^{4} \div 2^{7}=$
$84.3^{5} \div 4.3^{2}=$

Describe a pattern or relationship you see between the problems and the answers. Explain what the pattern means or why it happens.

Integer Exponents-Repeated Reasoning

\qquad

Find patterns in products of powers with different bases.
Expand each factor. Rewrite the expanded form as a power of a product. Then simplify. The first one has been done for you.

Set A
$12^{2} \times 4^{2}=2 \times 2 \times 4 \times 4=(2 \times 4)^{2}=8^{2}$
(2) $2^{3} \times 4^{3}=$ \qquad
(3) $2^{4} \times 4^{4}=$ \qquad
(4) $3^{2} \times 5^{2}=$ \qquad
(5) $3^{3} \times 5^{3}=$ \qquad
$6 n^{5} \times m^{5}=$ \qquad

Write the base as a product of two factors. Use the exponent to expand the product. Then write it as a product of two exponential expressions. The first one has been done for you.

Set B

1. $10^{2}=(2 \times 5)^{2}=2 \times 5 \times 2 \times 5=2^{2} \times 5^{2}$
(2) $10^{3}=$ \qquad
(3) $10^{4}=$
$46^{2}=$ \qquad
$56^{3}=$ \qquad
$6(m n)^{5}=$

Describe a pattern you see in one of the sets of problems above.
\qquad
\qquad
\qquad
\qquad

Write the numbers in scientific notation.
(1) $4,500=\square$
(3) $57=$ \qquad
(5) $730=$ \qquad
(7) $0.007=$ \qquad
(9) $300.25=$ \qquad
$1156,325.2=$ \qquad -
(12 $9,214.3=$ \qquad
(2) $0.0578=$ \qquad
(4) $0.006256=$ \qquad
6) $0.000042=$ \qquad
$825.63=$ \qquad

10 . $0.1456=$ \qquad

Write the numbers in standard form.
$137.65 \times 10^{3}=$ \qquad
$157.528 \times 10^{2}=$ \qquad
$172.7345 \times 10^{1}=$ \qquad

19 $8.752 \times 10^{5}=$ \qquad

21 $8.0 \times 10^{7}=$ \qquad
23. $5.3725 \times 10^{4}=$ \qquad
\qquad

Write the numbers in scientific notation.
(1) $6,500=$ \qquad
(3) $69=$ \qquad
(5) $820=$ \qquad
(7) $0.002=$ \qquad
(9) $400.75=$ \qquad
$1176,213.8=$ \qquad

Write the numbers in standard form.
(12) $1,876.4=$ \qquad
(2) $0.0354=$ \qquad
4. $0.007257=$ \qquad
(6) $0.000053=$ \qquad
$837.85=$ \qquad
$100.2531=$ \qquad -
$138.72 \times 10^{3}=$ \qquad $143.79 \times 10^{-1}=$ \qquad
(15 $3.628 \times 10^{2}=$ \qquad
$171.4278 \times 10^{1}=$ \qquad
$196.251 \times 10^{5}=$ \qquad
$219.0 \times 10^{7}=$ \qquad $226.213 \times 10^{-2}=$ \qquad
$234.1723 \times 10^{4}=$ \qquad
$169.786 \times 10^{-4}=$ \qquad
$183.4 \times 10^{-5}=$ \qquad
$204.0 \times 10^{-3}=$ \qquad
$244.6 \times 10^{-6}=$ \qquad
\qquad

Perform operations with numbers written in scientific notation. Write your Form A answers in standard form.
$1\left(4.2 \times 10^{4}\right) \times\left(2 \times 10^{3}\right)=$ \qquad $2\left(2.8 \times 10^{5}\right) \div\left(7 \times 10^{-2}\right)=$ \qquad
$3\left(3.9 \times 10^{6}\right)+\left(4.1 \times 10^{7}\right)=$ \qquad $4\left(5.05 \times 10^{-3}\right) \div\left(5.05 \times 10^{-2}\right)=$ \qquad
$6\left(4.5 \times 10^{4}\right)+\left(1.1 \times 10^{1}\right)=$ \qquad
$7\left(2.65 \times 10^{3}\right)-\left(1.21 \times 10^{3}\right)=$ \qquad $8\left(7.5 \times 10^{-2}\right)+\left(8.6 \times 10^{2}\right)=$ \qquad
$9\left(6.21 \times 10^{-2}\right)-\left(4.32 \times 10^{-4}\right)=$ \qquad $10\left(8.6 \times 10^{2}\right)+\left(9.4 \times 10^{2}\right)=$ \qquad
$11\left(2.6 \times 10^{5}\right) \cdot\left(3.8 \times 10^{-3}\right)=$ \qquad $12\left(1.7 \times 10^{-1}\right)+\left(2.59 \times 10^{-2}\right)=$ \qquad
$13 \frac{4.62 \times 10^{6}}{2.2 \times 10^{3}}=$ \qquad $14\left(4.25 \times 10^{5}\right) \cdot\left(3.5 \times 10^{-5}\right)=$ \qquad
\qquad

Perform operations with numbers written in scientific notation. Write your answers in standard form.
$1\left(3.1 \times 10^{4}\right) \times\left(3 \times 10^{3}\right)=$ \qquad $2\left(3.6 \times 10^{5}\right) \div\left(4 \times 10^{-2}\right)=$ \qquad
$4\left(6.39 \times 10^{-2}\right) \div\left(3 \times 10^{-3}\right)=$ \qquad
$3\left(2.7 \times 10^{6}\right)+\left(5.1 \times 10^{7}\right)=$ \qquad
$5\left(4.78 \times 10^{-3}\right) \times\left(2.1 \times 10^{3}\right)=$ \qquad $6\left(5.84 \times 10^{4}\right)+\left(6.2 \times 10^{1}\right)=$ \qquad
$7\left(3.85 \times 10^{3}\right)-\left(1.41 \times 10^{3}\right)=$ \qquad $8\left(3.5 \times 10^{-2}\right)+\left(7.9 \times 10^{2}\right)=$ \qquad
$9\left(5.31 \times 10^{-2}\right)-\left(2.34 \times 10^{-4}\right)=$ \qquad $10\left(7.2 \times 10^{2}\right)+\left(8.7 \times 10^{2}\right)=$ \qquad
$11\left(4.6 \times 10^{5}\right) \times\left(2.8 \times 10^{-3}\right)=$ \qquad $12\left(1.9 \times 10^{-1}\right)+\left(3.69 \times 10^{-2}\right)=$ \qquad

13 $\frac{1.725 \times 10^{6}}{7.5 \times 10^{3}}=$ \qquad $14\left(4.87 \times 10^{6}\right) \times\left(4.3 \times 10^{-5}\right)=$ \qquad

Solutions to Linear Equations Skills Practice

\qquad

Solve and tell whether the equation has 1 solution, no solution, or infinitely Form A many solutions.
$1-3 x+8-5 x=21-8 x$
2 $-2 y-7+5 y=13-2 y$

3 $12-8 z=-20-4 z$
$47+2 f=9+4 f$
$56+3 m-4=-5+3 m+7$
(7) $4 p-4=3 p-3$
$84 c+12=c-3$
$10-9 n-8=-10 n-7$
$116+8 b=-6+2 b$
$127 g+5-2 g=5+5 g$

Solutions to Linear EquationsSkills Practice

\qquad

Solve and tell whether the equation has 1 solution, no solution, or infinitely many solutions.

$1-3 x-8+5 x=17-3 x$
(3) $14-7 z=-22-3 z$
$49+4 g-6=-3+4 g+6$
$58+3 d=10+5 d$
$7 c+7+3 c=5 c+11$
$89+6 p=-9-3 p$
(9) $5 f+14=f-6$
$109 h-7=4 h-7$
$116 z+3-3 z=3+3 z$
$12-9 b-10=-10 b-9$

Solutions to Linear Equations Skills Practice

\qquad

Use the distributive property as needed to solve and tell whether the Form A equation has 1 solution, no solution, or infinitely many solutions.
$16 x-12=6(x-2)$
(2) $\frac{4}{5}-\frac{3}{10} m=\frac{1}{10} m-\frac{4}{5}$

3- $-15 x-4+6 x=-4-9 x$
$54(p+5)=6 p+20$
7. $15 y-4=12 y-28$

6 $3 m+11=\frac{1}{3}(9 m+33)$
$9-\frac{1}{2}(4 a+8)=-2 a+4$
$103(m-4)=6 m-15$
$118(2 y+5)=9 y+12$
$122 n+14=3 n+5$

Solutions to Linear Equations Skills Practice

\qquad

Use the distributive property as needed to solve and tell whether the equation has 1 solution, no solution, or infinitely many solutions.

1) $\frac{2}{3}-\frac{1}{6} m=\frac{1}{6} m-\frac{2}{3}$
$27 x-14=7(x-2)$
$37(p+4)=9 p+28$
$54 m+11=\frac{1}{8}(32 m+88)$
7. $-9+4 n+18=7 n-24$
$814 y-6=11 y-27$
$95(m-3)=7 m-17$
$10-\frac{1}{4}(8 a+20)=-2 a+5$
$117(4 y+5)=19 y+8$
$12-9 n-8-3 n=6 n-8$
\qquad

Solve systems of equations using substitution.

Form A

$1 y=4 x$
$2 y+2.5 x=105$
$2 x+10=-8 y$
$-8 y+x=6$
$3 x=-6 y$
$3 x+6 y=-24$
$4 x-9=7 y$
$7 y+x=-19$
$5 y=7 x$
$-2 x+y=15$
$6 x+5=-4 y$
$-4 y+x=43$
(7) $x-1=\frac{1}{2} y$
$\frac{1}{2} y+x=11$
$8 y=\frac{1}{3} x$
$-6 x+3 y=30$

$$
\begin{aligned}
& 10 y=0.5 x \\
& 8 y-6 x=-20
\end{aligned}
$$

\qquad

Solve systems of equations using substitution.

$1 \begin{aligned} & x=7 y \\ & 3 x+2 y=23\end{aligned}$
$2 x=4 y$
$0.5 y+2 x=85$
$3 x-6=5 y$
$5 y+x=-24$
$4 x=9 y$
$5 x+3 y=-48$
$5 y=\frac{1}{5} x$
$-7 x+5 y=60$
(6) $x-8=\frac{1}{6} y$
$\frac{1}{6} y+x=10$
$7 y=3 x$
$-2 x+y=5$
$8 x+7=-3 y$
$-3 y+x=41$
$9 y=1.5 x$ $10 y-3 x=96$
$10 x+7=8 y$
$8 y+x=9$
\qquad

Solve systems of equations using any method.

$13 x-4 y=7$
$3 x-4 y=9$

3 . $y=2 x$
$4 y+3 x=55$
$210 x-15 y=30$
$2 x-4 y=4$
$46 x+2 y=20$
$3 x+2 y=8$

5 ($14 y-7 x=21$
$x-2 y=-3$

6 . $9 x-6 y=3$
$-9 x+4 y=7$

7 7 $7 y+8 x=15$
$3 y+8 x=11$
$87 x-6 y=4$
$-6 y+7 x=5$
$95 x-4 y=9$
$3 x+8 y=-5$
$10 x+4=6 y$
$6 y+x=8$
\qquad

Solve systems of equations using any method.

$120 x-10 y=50$
$10 x-15 y=-5$
$3 y=3 x$
$5 y+5 x=40$
$58 x-4 y=4$
$-8 x+2 y=6$
7. $8 x-4 y=3$

$$
-4 y+8 x=9
$$

$89 y+6 x=15$
$2 y+6 x=8$
$910 x+4 y=8$
$5 x+8 y=16$
$10 x=-2 y$
$3 y+5 x=-21$
\qquad

Solve systems of equations involving fractions and decimals.

$1 \quad x=0.5 y$
$6 x+2 y=20$
(3) $\frac{3}{5} x+\frac{7}{10} y=20$ $2 x-7 y=-120$
(4) $x=\frac{1}{4} y$
$12 x-4 y=8$
$54 x+5 y=42$
$\frac{2}{3} x-\frac{1}{6} y=1$
$6-8 x-7 y=3$
$\frac{4}{5} x+\frac{7}{10} y=\frac{3}{10}$
(7) $\frac{1}{8} x+\frac{1}{4} y=2$
$x+2 y=16$
$8 x=\frac{1}{6} y$
$36 x-2 y=24$
$96 x-5 y=36$
$0.5 x+2.5 y=3$
$102.5 x+5 y=50$
$1.25 x+1.5 y=21$
\qquad

Solve systems of equations involving fractions and decimals.
$1 \begin{aligned} & x=-0.5 y \\ & 8 x+6 y=12\end{aligned}$
(3) $4 x-7 y=32$
$0.5 x+3.5 y=4$
$42 x+6 y=8$
$0.25 x+0.25 y=0.5$

2 $-6 x+12 y=14$
$1.5 x-3 y=-3.5$
(5) $\frac{4}{5} x+\frac{3}{10} y=13$

$$
2 x-3 y=-80
$$

\qquad

Find the slope of the line through two given points.

Form A

$1(7,7)$ and $(9,9)$
slope $=$ \qquad
$4(-2,-3)$ and $(-1,-6)$
slope $=$ \qquad
$7(5,6)$ and $(9,8)$
slope $=$ \qquad
$10(-8,17)$ and $(-5,19)$ slope $=$ \qquad
$13(8,5)$ and $(4,-7)$
slope $=$ \qquad
$16(3,8)$ and $(4,6)$
slope $=$ \qquad
$19(-2,3)$ and $(4,-2)$
slope $=$ \qquad
$2(8,11)$ and $(5,5)$
slope $=$ \qquad
$5(-1,-4)$ and $(3,12)$
slope $=$ \qquad
$8(-2,-13)$ and $(-4,-3)$
slope $=$ \qquad
$9(5,9)$ and $(3,11)$ slope $=$ \qquad
$12(6,3)$ and $(-6,6)$ slope $=$ \qquad
$11\left(\frac{1}{4}, 4\right)$ and $\left(\frac{3}{4}, 5\right)$
slope $=$ \qquad
$14\left(\frac{1}{8},-2\right)$ and $\left(\frac{5}{8},-4\right)$
slope $=$ \qquad
$15(0,4)$ and $(-10,0)$ slope $=$ \qquad
$18(-3,0)$ and $(0,9)$ slope $=$ \qquad
$21\left(-\frac{1}{4}, \frac{1}{4}\right)$ and $(-2,2)$ slope $=$ \qquad

Linear Functions-Skills Practice

Find the slope of the line through two given points.
$1(7,10)$ and $(4,4)$
slope $=$ \qquad
$4(0,0)$ and $(9,4)$
slope $=$ \qquad
$7\left(\frac{1}{4^{\prime}}-3\right)$ and $\left(\frac{3}{4^{\prime}}-5\right)$
slope $=$ \qquad
$10(-2,-5)$ and $(-4,-11)$ slope $=$ \qquad
$13\left(\frac{1}{8}, 6\right)$ and $\left(\frac{5}{8}, 7\right)$ slope $=$ \qquad
$14(1,1)$ and $(-2,7)$
slope $=$ \qquad
$17(4,12)$ and $(5,10)$
slope $=$ \qquad
$19(9,6)$ and (4, -9)
slope $=$ \qquad
$2(6,6)$ and $(14,14)$
slope $=$ \qquad
$5(-1,-10)$ and $(4,15)$
slope $=$ \qquad
$8\left(-\frac{1}{5}, \frac{1}{5}\right)$ and $(-2,2)$ slope $=$ \qquad
$11(-7,16)$ and $(-4,18)$ slope $=$ \qquad
$12(9,6)$ and $(-9,9)$ slope $=$ \qquad
$15(-2,0)$ and $(0,-10)$ slope $=$ \qquad
$18(6,7)$ and $(1,12)$ slope $=$ \qquad
$21(6,8)$ and $(9,8)$ slope $=$ \qquad
\qquad

Determine the rate of change and the initial value of the line through two

 given points.$1(5,14)$ and $(3,10)$
Rate of change $=$ \qquad Initial value = \qquad
$4(4,8)$ and $(12,10)$
Rate of change $=$ \qquad
Initial value $=$ \qquad
$7(1,6)$ and $(6,1)$
Rate of change $=$ \qquad
Initial value = \qquad
$10(1,3)$ and $(3,9)$ Rate of change $=$ \qquad Initial value $=$ \qquad
$2(9,32)$ and $(4,17)$
Rate of change $=$ \qquad
Initial value $=$ \qquad
$3(8,5)$ and $(4,7)$ Rate of change $=$ \qquad Initial value $=$ \qquad
$5(3,13)$ and $(6,14)$
Rate of change $=$ \qquad
Initial value = \qquad
$8(3,8)$ and $(12,2)$
Rate of change $=$ \qquad
Initial value = \qquad
$9(4,1)$ and $(8,2)$ Rate of change $=$ \qquad Initial value = \qquad
$12 \begin{aligned} & (5,12) \text { and }(2,6) \\ & \text { Rate of change }=\end{aligned}$ \qquad Initial value $=$ \qquad

Give the rate of change and the initial value from each description.

13 Yamini starts a savings account with $\$ 12$. She will put in an equal amount each week. After 6 weeks, she will have $\$ 54$. Rate of change per week $=$ \qquad Initial value = \qquad -

14 Jordan has some music books. He will buy 9 new music books each year. He will have 52 music books in 5 years. Rate of change per year $=$ \qquad Initial value $=$ \qquad
\qquad

Determine the rate of change and the initial value of the line through two given points.

$1(1,4)$ and $(3,12)$
Rate of change $=$ \qquad Initial value = \qquad
$4(0,5)$ and $(8,5)$
Rate of change $=$ \qquad Initial value = \qquad
$7(1,3)$ and $(3,1)$ Rate of change $=$ \qquad Initial value $=$ \qquad
$10(8,4)$ and $(4,6)$
Rate of change $=$ \qquad Initial value $=$ \qquad
$2(5,18)$ and $(2,9)$
Rate of change $=$ \qquad
Initial value = \qquad
$3(5,1)$ and $(10,2)$ Rate of change $=$ \qquad Initial value $=$ \qquad
$6(8,30)$ and $(5,21)$ Rate of change $=$ \qquad Initial value $=$ \qquad
$9(3,11)$ and $(5,11)$ Rate of change $=$ \qquad Initial value $=$ \qquad
$12(6,8)$ and $(15,2)$ Rate of change $=$ \qquad Initial value $=$ \qquad
$11(6,16)$ and $(9,17)$
Rate of change $=$ Initial value $=$ \qquad
$8(4,7)$ and $(12,9)$
Rate of change $=$ \qquad Initial value $=$ \qquad

Give the rate of change and the initial value from each description.

13 Kahn starts a savings account with $\$ 14$. He will put in an equal amount each week. After 7 weeks, he will have $\$ 56$.
Rate of change per week $=$ \qquad Initial value = \qquad
$1(-4,0)$ and slope $=-2$
$2(-5,2)$ and slope $=-1$
$3(4,5)$ and slope $=0$
$4(-3,-2)$ and slope $=5$
$5(5,6)$ and slope $=1$
$8(1,1)$ and slope $=-4$
$7(-1,-1)$ and slope $=-\frac{1}{2}$
$9(-2,-2)$ and slope $=\frac{1}{4}$
$10(0,-2)$ and slope $=-5$
$11(1,2)$ and slope $=-\frac{1}{3}$
$14(4,4)$ and slope $=-3$
$13(2,-3)$ and slope $=0$
$15(3,5)$ and slope $=-\frac{3}{5}$
$16(2,7)$ and slope $=1$
$17(3,-3)$ and slope $=-6$
$18(2,2)$ and slope $=2$
$19(-2,1)$ and slope $=\frac{1}{6}$
$20(4,2)$ and slope $=-2$
$21(0,0)$ and slope $=\frac{2}{3}$
$22(2,4)$ and slope $=-1$
$23(1,-1)$ and slope $=3$
$24(-1,1)$ and slope $=8$

Linear Functions-Skills Practice

Identify another point on the line given one point and the slope.
$1(6,7)$ and slope $=0$
$4(-6,0)$ and slope $=-2$
$5(3,11)$ and slope $=1$
$2(-4,-5)$ and slope $=5$
$3(-4,3)$ and slope $=-1$
$6(0,0)$ and slope $=\frac{1}{4}$
$7(-1,-1)$ and slope $=-\frac{3}{5}$
$8(1,2)$ and slope $=-\frac{1}{2}$
$9(0,-3)$ and slope $=-5$
$10(4,-8)$ and slope $=3$
$11(4,-9)$ and slope $=0$
$12(-3,3)$ and slope $=-\frac{1}{3}$
$13(5,5)$ and slope $=-2$
$14(5,-5)$ and slope $=-6$
$15(8,9)$ and slope $=1$
$16(-2,3)$ and slope $=\frac{2}{3}$
$17(3,4)$ and slope $=-4$
$18(-3,1)$ and slope $=\frac{1}{6}$
$19(1,1)$ and slope $=-3$
$20(0,0)$ and slope $=4$
$21(-1,1)$ and slope $=2$
$22(8,8)$ and slope $=8$
$23(1,-1)$ and slope $=-1$
$24(6,2)$ and slope $=3$

