Fluency Table of Contents

F	' age
tional and Irrational Numbers	
Evaluate square roots and cube	
roots.	336
Solve equations of the form $x^2 = p$ and $x^3 = p$.	338
Approximate irrational numbers.	340
Approximate expressions with irrational numbers.	342
Rewrite a repeating decimal as a fraction.	. 344
Repeated Reasoning Find patterns in repeating decimals	346
leger Exponents	
Skills Practice (Forms A and B) Simplify expressions with exponents	347
Simplify more expressions with exponents.	349
Repeated Reasoning	
Find patterns in products of powers with the same base.	351
Find more patterns in products of powers with the same base.	352
Find patterns in quotients of powers with the same base.	353
Find more patterns in quotients of powers with the same base.	354
Find patterns in products of powers with different bases.	355

	Page
Scientific Notation Skills Practice (Forms A and B)	
Write the numbers in scientific	
notation	356
Perform operations with numbers written in scientific notation.	358
Solutions to Linear Equations	
Skills Practice (Forms A and B) Solve and tell how many solutions	360
Use the distributive property to solve and tell how many solutions	362
Systems of Equations	
Skills Practice (Forms A and B)	
Solve systems of equations using substitution.	364
Solve systems of equations using any method	366
Solve systems of equations involving fractions and decimals.	368
Linear Functions	
Skills Practice (Forms A and B)	
Find the slope of the line through two given points	370
Determine the rate of change and the initial value of the line through two given points.	372
Identify another point on the line given one point and the slope.	374

R

Rational and Irrational Numbers— Name: _____ **Skills Practice** Evaluate square roots and cube roots. Simplify each expression. Form A $\sqrt[3]{0} =$ _____ $\sqrt{16} =$ _____ $\sqrt{1} =$ _____ $\sqrt{144} =$ _____ $\sqrt{64} =$ _____ $\sqrt{169} =$ _____ $\sqrt[3]{8} =$ _____ $\sqrt{49} =$ _____ $\sqrt{100} =$ _____ $\sqrt[3]{27} =$ _____ $\sqrt[3]{125} =$ _____ $\sqrt{2,500} =$ _____ $\sqrt{36} =$ _____ $\sqrt[3]{64} =$ $\sqrt{900} =$ _____ $\sqrt{441} =$ _____ $\sqrt{25} =$ _____ $\sqrt[3]{1,000} =$ _____

Name:

Form A

Approximate irrational numbers.

Write the two consecutive whole numbers that the given number is between.

Approximate to the nearest whole number.

Approximate to the nearest tenth.

19 √5 ≈	20 √10 ≈	21 $\sqrt{8} \approx$
22 √28 ≈	23 √23 ≈	24 √84 ≈

Approximate to the nearest hundredth.

26 $\sqrt{10} \approx$

Rational and Irrational	Numbers—
Skills Practice	

Name:	

Approximate irrational numbers.

Form B

Write the two consecutive whole numbers that the given number is between.

Approximate to the nearest whole number.

Approximate to the nearest tenth.

19 √2 ≈	20 √3 ≈	21 √7 ≈
22 √14 ≈	23 √55 ≈	24 √39 ≈

Approximate to the nearest hundredth.

26 $\sqrt{3} \approx$

Rational and Irrational N Skills Practice	Numbers—	Name:
Approximate expressions with in Give the two consecutive whole is between.	rrational numbers. numbers that the given expres	Form A
1 2√3	2 2π	3 $\sqrt{35}$ + 2
4 $\frac{4}{3}\pi$	5 4\sqrt{5}	6 √ <u>48</u> − 2
Approximate the value of the example $\sqrt{5} + \sqrt{2} \approx$	epression to the nearest whole $\pi^2 \approx$	number. 9 $\frac{\sqrt{82}}{4} \approx$

10 $3\pi \approx$ _____

Approximate the value of the expression to the nearest tenth.

Rational and Irrational Numbers— Name: **Skills Practice** Approximate expressions with irrational numbers. Form **B** Give the two consecutive whole numbers that the given expression is between. $3\sqrt{35}-2$ $1 2\sqrt{2}$ 2 4π_____ 4 $\frac{2}{3}\pi$ **5** 4\sqrt{8}_____ 6 $\sqrt{48} + 2$ Approximate the value of the expression to the nearest whole number. **7** $\sqrt{3} + \sqrt{2} \approx$ **8** $\pi^3 \approx$ **8** 9 $\frac{\sqrt{65}}{3} \approx$ _____ 11 $(\sqrt{3})^3 \approx$ _____ 12 $4\sqrt{26} \approx$ 10 $\frac{\pi}{3} \approx$ _____

Approximate the value of the expression to the nearest tenth.

Rational and Irrational Numbers— Name: _____ **Skills Practice** Rewrite a repeating decimal as a fraction. Form A **1** $0.\overline{6} =$ _____ **2** $0.\overline{63} =$ 3 0.4 = 4 0.83 = **5** $0.1\overline{3} =$ _____ 6 0.27 = _____ 7 0.61 = _____ 8 0.06 = 9 0.94 = **11** 0.7 = **10** $0.\overline{36} =$ **12** $0.\overline{54} =$ **13** 0.416 = _____ 14 0.86 = _____ **15** $0.08\overline{3} =$ _____ **16** $0.\overline{27} =$ 17 0.1 = _____ **18** 0.90 =

Rational and Irrational Numbers— Name: _____ **Skills Practice** Rewrite a repeating decimal as a fraction. Form **B** 1 $0.\overline{3} =$ _____ **2** $0.\overline{81} =$ **3** $0.\overline{5} =$ _____ **4** 0.1 6 = _____ **5** $0.7\overline{3} =$ _____ 6 0.38 = _____ 8 0.26 = _____ **7** $0.7\overline{2} =$ _____ 9 0.53 = _____ 11 $0.\overline{2} =$ _____ 12 0.45 = _____ 10 0.18 = _____ **15** 0.91 6 = _____ **13** $0.58\overline{3} =$ 14 $0.0\overline{5} =$ _____ 17 0.8 = **16** 0.09 = _____ **18** 0.72 = _____

Find patterns in repeating decimals. Rewrite each decimal as a fraction.

Describe a pattern you see in one of the sets of problems above.

©Curriculum Associates, LLC Copying is permitted for classroom use.

©Curriculum Associates, LLC Copying is permitted for classroom use.

Name: _

Find patterns in products of powers with the same base.

Expand each factor. Write the product in expanded form. Then write the product using an exponent. The first one is done for you.

1	$2^3 \times 2^2 = (2 \times 2 \times 2) \times (2 \times 2) = 2 \times 2 \times 2 \times 2 \times 2 = 2^5$	
2	$3^3 \times 3^2 =$	-
3	$4^3 \times 4^2 =$	-
4	$5^3 \times 5^2 =$	
5	$6^3 \times 6^2 =$	
6	$7^3 \times 7^2 =$	
7	8 ³ × 8 ² =	
8	$9^3 \times 9^2 =$	-
9	$n^3 \times n^2 =$	-
10	$4.2^3 \times 4.2^2 =$	-

Describe a pattern or relationship you see between the problems and the answers. Explain what the pattern means or why it happens.

Name: _

Find more patterns in products of powers with the same base. Write each expression as a power of a single number.

Set A	
1 $3^2 \times 3^1 =$	2 $3^{-2} \times 3^{-1} =$
3 $3^2 \times 3^2 =$	4 $3^{-2} \times 3^{-2} =$
5 $3^2 \times 3^3 =$	6 $3^{-2} \times 3^{-3} =$
_	
7 $3^2 \times 3^4 =$	8 $3^{-2} \times 3^{-4} =$
$3^2 \times 3^3 = $	10 $3^{-2} \times 3^{-3} = $
11 $3^2 \times 3^6 =$	12 $3^{-2} \times 3^{-6} =$
Set B	
Set D	
1 $3^{-2} \times 3^{1} = $	2 $3^{-2} \times 3^2 =$ 3 $3^{-2} \times 3^3 =$ 3
4 $3^2 \times 3^{-1} =$	5 $3^2 \times 3^{-2} =$ 6 $3^2 \times 3^{-3} =$ 6

Describe a pattern you see in one of the sets of problems above.

Name: _

Find patterns in quotients of powers with the same base.

Expand each term in the quotient of powers. Write the quotient in expanded form. Then write the quotient using an exponent. The first one has been done for you.

1 $2^5 \div 2^3 = (2 \cdot 2 \cdot 2 \cdot 2 \cdot 2) \div (2 \cdot 2 \cdot 2) = 2 \cdot 2 = 2^2$	
2 $3^5 \div 3^3 =$	-
3 $4^5 \div 4^3 =$	-
4 $5^5 \div 5^3 =$	-
5 $6^5 \div 6^3 =$	-
6 $7^5 \div 7^3 =$	-
7 $8^5 \div 8^3 =$	_
8 $9^5 \div 9^3 =$	-
9 $n^5 \div n^3 =$	-
10 $6.3^5 \div 6.3^3 =$	-

Describe a pattern or relationship you see between the problems and the answers. Explain what the pattern means or why it happens.

Name: _

Find more patterns in quotients of powers with the same base.

Expand each term in the quotient of powers. Write the quotient in expanded form. Then write the quotient using an exponent. The first one has been done for you.

1	$2^4 \div 2^1 = (2 \times 2 \times 2 \times 2) \div (2) = 2 \times 2 \times 2 = 2^3$	
2	$2^4 \div 2^2 =$	-
3	$2^4 \div 2^3 =$	-
4	$2^4 \div 2^4 =$	
5	$2^4 \div 2^5 =$	-
6	$2^4 \div 2^6 =$	-
7	$2^4 \div 2^7 =$	-
8	$4.3^5 \div 4.3^2 =$	-

Describe a pattern or relationship you see between the problems and the answers. Explain what the pattern means or why it happens.

Name:

Find patterns in products of powers with different bases.

Expand each factor. Rewrite the expanded form as a power of a product. Then simplify. The first one has been done for you.

Set A	
1 $2^2 \times 4^2 = 2 \times 2 \times 4 \times 4 = (2 \times 4)^2 = 8^2$	
2 $2^3 \times 4^3 =$	-
3 2 ⁴ × 4 ⁴ =	
4 $3^2 \times 5^2 =$	
5 $3^3 \times 5^3 =$	
6 $n^5 \times m^5 =$	-

Write the base as a product of two factors. Use the exponent to expand the product. Then write it as a product of two exponential expressions. The first one has been done for you.

Describe a pattern you see in one of the sets of problems above.

Scientific Notation—Skills Practice

Name:

Write the numbers in scientific notation.

Write the numbers in standard form.

13	7.65 × 10 ³ =	14 5.21 × 10 ⁻¹ =
15	7.528 × 10 ² =	16 2.169 \times 10 ⁻⁴ =
17	2.7345 × 10 ¹ =	18 4.6 \times 10 ⁻⁵ =
19	8.752 × 10 ⁵ =	20 $5.0 \times 10^{-3} =$
21	8.0 × 10 ⁷ =	22 5.639 × 10 ⁻² =
23	5.3725 × 10 ⁴ =	24 1.3 × 10 ⁻⁶ =

356 **Fluency Practice**

Form A

Scientific Notation—Skills Practice

Write the numbers in scientific notation.		Form B
1 6,500 =	2 0.0354 =	
3 69 =	4 0.007257 =	-
5 820 =	6 0.000053 =	-
7 0.002 =	8 37.85 =	
9 400.75 =	10 0.2531 =	
11 76,213.8 =	1,876.4 =	

Name: _

Write the numbers in standard form.

13	8.72 × 10 ³ =	14 3.79 × 10 ⁻¹ =
15	3.628 × 10 ² =	16 9.786 × 10 ⁻⁴ =
17	1.4278 × 10 ¹ =	18 3.4 × 10 ⁻⁵ =
19	6.251 × 10 ⁵ =	20 4.0 × 10 ⁻³ =
21	9.0 × 10 ⁷ =	22 6.213 × 10 ⁻² =
23	4.1723 × 10 ⁴ =	24 4.6 × 10 ⁻⁶ =

Solve and tell whether the equation has 1 solution, no solution, or infinitely Form A many solutions.				

Solutions to Linear Equations— Skills Practice	Name:	
Solve and tell whether the equation has 1 solu many solutions.	ition, no solution, or infinitely	Form B
1 -3x - 8 + 5x = 17 - 3x	2 $-4a + 6 - 2a = 12 - 6a$	
3 $14 - 7z = -22 - 3z$	4 $9+4g-6=-3+4g+6$	
5 $8 + 3d = 10 + 5d$	6 $5w - 5 = 4w - 4$	
7 $c + 7 + 3c = 5c + 11$	8 $9+6p=-9-3p$	
9 $5f + 14 = f - 6$	10 $9h - 7 = 4h - 7$	

```
11 6z + 3 - 3z = 3 + 3z
12 -9b - 10 = -10b - 9
```

Solutions to Linear Equations— Skills Practice

Name: _

Use the distributive property as needed to solve and tell whether the Form A equation has 1 solution, no solution, or infinitely many solutions.

1
$$6x - 12 = 6(x - 2)$$
 2 $\frac{4}{5} - \frac{3}{10}m = \frac{1}{10}m - \frac{4}{5}$

3
$$-15x - 4 + 6x = -4 - 9x$$
 4 $7(y - 6) = 7y + 42$

5
$$4(p+5) = 6p + 20$$
 6 $3m + 11 = \frac{1}{3}(9m + 33)$

7
$$15y - 4 = 12y - 28$$
 8 $-8 + 2n + 14 = 4n - 16$

9
$$-\frac{1}{2}(4a+8) = -2a+4$$
 10 $3(m-4) = 6m-15$

11
$$8(2y + 5) = 9y + 12$$
 12 $2n + 14 = 3n + 5$

Solutions to Linear Equations— Skills Practice

Use the distributive property as needed to solve and tell whether the equation has 1 solution, no solution, or infinitely many solutions.

Form **B**

Name: _____

1
$$\frac{2}{3} - \frac{1}{6}m = \frac{1}{6}m - \frac{2}{3}$$

2 $7x - 14 = 7(x - 2)$
3 $7(p + 4) = 9p + 28$
4 $-16x - 8 + 9x = -8 - 7x$
5 $4m + 11 = \frac{1}{8}(32m + 88)$
6 $8(y - 7) = 8y + 56$
7 $-9 + 4n + 18 = 7n - 24$
8 $14y - 6 = 11y - 27$
9 $5(m - 3) = 7m - 17$
10 $-\frac{1}{4}(8a + 20) = -2a + 5$

11 7(4y + 5) = 19y + 8 **12** -9n - 8 - 3n = 6n - 8

Solve systems of equations using substitution.

1
$$y = 4x$$

 $2y + 2.5x = 105$
2 $x + 10 = -8y$
 $-8y + x = 6$

3
$$x = -6y$$

 $3x + 6y = -24$
4 $x - 9 = 7y$
 $7y + x = -19$

5
$$y = 7x$$

 $-2x + y = 15$
6 $x + 5 = -4y$
 $-4y + x = 43$

7
$$x - 1 = \frac{1}{2}y$$

 $\frac{1}{2}y + x = 11$
8 $y = \frac{1}{3}x$
 $-6x + 3y = 30$

9 x = 1.5y-8x - 2y = -84

10
$$y = 0.5x$$

 $8y - 6x = -20$

364 Fluency Practice

Form A

Name: _

Solve systems of equations using substitution.

1
$$x = 7y$$

 $3x + 2y = 23$
2 $x = 4y$
 $0.5y + 2x = 85$

3
$$x - 6 = 5y$$

 $5y + x = -24$
4 $x = 9y$
 $5x + 3y = -48$

9 y = 1.5x10y - 3x = 96 **10** x + 7 = 8y8y + x = 9

Name: _

Solve systems of equations using any method.

1
$$3x - 4y = 7$$

 $3x - 4y = 9$
2 $10x - 15y = 30$
 $2x - 4y = 4$

3
$$y = 2x$$

 $4y + 3x = 55$
4 $6x + 2y = 20$
 $3x + 2y = 8$

5
$$14y - 7x = 21$$

 $x - 2y = -3$
6 $9x - 6y = 3$
 $-9x + 4y = 7$

7 7y + 8x = 158 7x - 6y = 43y + 8x = 11-6y + 7x = 5

9 5x - 4y = 93x + 8y = -5

10
$$x + 4 = 6y$$

 $6y + x = 8$

366 Fluency Practice

Form A

Name: _

Solve systems of equations using any method.

3
$$y = 3x$$

 $5y + 5x = 40$
4 $7x + 4y = 30$
 $3x + 4y = 6$

5
$$8x - 4y = 4$$

 $-8x + 2y = 6$
6 $15y - 5x = 20$
 $x - 3y = -4$

7
$$8x - 4y = 3$$
8 $9y + 6x = 15$ $-4y + 8x = 9$ $2y + 6x = 8$

9 10x + 4y = 8 5x + 8y = 1610 x = -2y3y + 5x = -21

Name: ____

Name: _

Solve systems of equations involving fractions and decimals.

1
$$x = 0.5y$$
2 $2x + 3y = 5$ $6x + 2y = 20$ $0.25x + 0.25y = 0.5$

3
$$\frac{3}{5}x + \frac{7}{10}y = 20$$

 $2x - 7y = -120$
4 $x = \frac{1}{4}y$
 $12x - 4y = 8$

5
$$4x + 5y = 42$$

 $\frac{2}{3}x - \frac{1}{6}y = 1$
6 $-8x - 7y = 3$
 $\frac{4}{5}x + \frac{7}{10}y = \frac{3}{10}$

7
$$\frac{1}{8}x + \frac{1}{4}y = 2$$

 $x + 2y = 16$
8 $x = \frac{1}{6}y$
 $36x - 2y = 24$

9 6x - 5y = 360.5x + 2.5y = 3

10
$$2.5x + 5y = 50$$

 $1.25x + 1.5y = 21$

Form A

ſ

Name:

Solve systems of equations involving fractions and decimals.

1
$$x = -0.5y$$
 2 $-6x + 12y = 14$
 $8x + 6y = 12$
 $1.5x - 3y = -3.5$

3
$$4x - 7y = 32$$

 $0.5x + 3.5y = 4$
4 $2x + 6y = 8$
 $0.25x + 0.25y = 0.5$

5
$$\frac{4}{5}x + \frac{3}{10}y = 13$$

 $2x - 3y = -80$
6 $y = \frac{1}{5}x$
 $3x - 25y = 20$

7
$$\frac{1}{5}x + \frac{1}{10}y = 3$$

 $2x + y = 30$
8 $4x + y = 12$
 $\frac{1}{3}x - \frac{1}{6}y = -2$

9
$$-6x - 3y = 5$$

 $\frac{3}{4}x + \frac{3}{8}y = \frac{5}{8}$
10 $2x + 5y = 24$
 $\frac{1}{2}x - \frac{3}{4}y = -2$

Form **B**

Linear Functions—Skills Practice Name: _____ Find the slope of the line through two given points. Form B **1** (7, 10) and (4, 4) **2** (6, 6) and (14, 14) **3** (-3, -4) and (-2, -7) slope = _____ slope = _____ slope =_____ 4 (0, 0) and (9, 4) **5** (-1, -10) and (4, 15) 6 (2, 4) and (4, 6) slope = _____ slope = _____ slope = _____ **7** $\left(\frac{1}{4}, -3\right)$ and $\left(\frac{3}{4}, -5\right)$ **8** $\left(-\frac{1}{5},\frac{1}{5}\right)$ and (-2, 2) 9 (2, 7) and (6, 9) slope = _____ slope = _____ slope = _____ **10** (-2, -5) and (-4, -11)11 (-7, 16) and (-4, 18) **12** (9, 6) and (-9, 9) slope = _____ slope = _____ slope = _____ **13** $(\frac{1}{8}, 6)$ and $(\frac{5}{8}, 7)$ **14** (1, 1) and (-2, 7) **15** (-2, 0) and (0, -10) slope = _____ slope = _____ slope = _____ **16** (0, -6) and (-8, 0) 17 (4, 12) and (5, 10) 18 (6, 7) and (1, 12) slope = _____ slope = _____ slope = _____ **20** (2, -1) and (7, 2) 19 (9, 6) and (4, -9) **21** (6, 8) and (9, 8) slope = _____ slope = _____ slope = _____

371

Linear Functions—Skills Practice Name: Determine the rate of change and the initial value of the line through two Form A given points. 1 (5, 14) and (3, 10) 2 (9, 32) and (4, 17) **3** (8, 5) and (4, 7) Rate of change = _____ Rate of change = _____ Rate of change = _____ Initial value = _____ Initial value = _____ Initial value = _____ 4 (4, 8) and (12, 10) 5 (3, 13) and (6, 14) 6 (0, 4) and (7, 4) Rate of change = _____ Rate of change = _____ Rate of change =Initial value = _____ Initial value = _____ Initial value = _____ 7 (1, 6) and (6, 1) 8 (3, 8) and (12, 2) 9 (4, 1) and (8, 2) Rate of change =Rate of change =Rate of change =Initial value = _____ Initial value = Initial value = 10 (1, 3) and (3, 9) 11 (2, 8) and (4, 8) **12** (5, 12) and (2, 6) Rate of change = _____ Rate of change = _____ Rate of change = _____ Initial value = _____ Initial value = _____ Initial value = _____

Give the rate of change and the initial value from each description.

- Yamini starts a savings account with \$12. She will put in an equal amount each week. After 6 weeks, she will have \$54.
 Rate of change per week = _________
 Initial value = _______
- Jordan has some music books. He will buy 9 new music books each year.
 He will have 52 music books in 5 years.
 Rate of change per year = ______
 Initial value = ______

Lin	near Functions—Skills F	Practice	Name:	
Determine the rate of change and the initial value of the line through two For given points.				
1	(1, 4) and (3, 12)	2 (5, 18) and (2, 9)	3 (5, 1) and (10	9, 2)
	Rate of change =	Rate of change =	Rate of chan	Ige =
	Initial value =	Initial value =	Initial value	=
4	(0, 5) and (8, 5)	5 (1, 6) and (6, 16)	6 (8, 30) and (9	5, 21)
	Rate of change =	Rate of change =	Rate of char	ige =
	Initial value =	Initial value =	Initial value	=
7	(1, 3) and (3, 1)	8 (4, 7) and (12, 9)	9 (3, 11) and (5	g, 11)
	Rate of change =	Rate of change =	Rate of chan	ge =
	Initial value =	Initial value =	Initial value	=
10	(8, 4) and (4, 6)	1 (6, 16) and (9, 17)	12 (6, 8) and (15	5, 2)
	Rate of change =	Rate of change =	Rate of char	ge =
	Initial value =	Initial value =	Initial value	=

Give the rate of change and the initial value from each description.

- Kahn starts a savings account with \$14. He will put in an equal amount each week. After 7 weeks, he will have \$56.
 Rate of change per week = _________
 Initial value = _______
- Addison has some puzzle books. She will buy 7 new puzzle of books each year. She will have 43 puzzle books in 5 years. Rate of change per year = _____ Initial value = _____

373

